

Datos técnicos

7 Datos técnicos

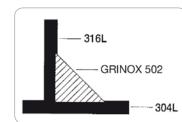
7.1. TIPOS DE CARRETES	7/3
7.2. DATOS TÉCNICOS PARA LA SOLDADURA DE ACEROS INOXIDABLES	7/4
7.2.1. MATERIALES DE APORTACIÓN PARA LA SOLDADURA DE ACEROS INOXIDABLES	
7.3. DATOS TÉCNICOS PARA LA SOLDADURA DEL ALUMINIO Y SUS ALEACIONES	7/6
7.3.1. MATERIALES DE APORTACIÓN RECOMENDADOS PARA LA SOLDADURA DE ALEACIONES DE ALUMINIO DISIMILARES	7/6
7.4. DATOS TÉCNICOS PARA LA SOLDADURA DE REPARACIÓN Y MANTENIMIENTO	7/7
7.4.1. CUADRO DE TEMPERATURAS DE PRECALENTAMIENTO	7/8 7/9 7/10
7.5. DATOS TÉCNICOS PARA RECARGUE DURO	7/12
7.5.1. CONCEPTO RECARGUE DURO	7/13
7.6. DATOS TÉCNICOS PARA LA SOLDADURA DE BAJO PUNTO DE FUSIÓN	7/15
7.6.1. CONCEPTO SOLDADURA DE BAJO PUNTO DE FUSIÓN	7/15
7.7. DEFECTOS EN CORDONES DE SOLDADURA	7/17

7 Datos técnicos

7.1. TIPOS DE CARRETES

CARRETES DE PLÁSTICO	DIMENSIONES	
D200: bobina de 5 kg.	b = 56 mm d1 = 51,5 mm d2 = 200 mm	di di
D300: bobina de 15 kg.	b = 105 mm d1 = 51,5 mm d2 = 300 mm	d1 d2
CARRETES METÁLICOS	DIMENSIONES	
S300: bobina de 15 kg.	b = 100 mm d1 = 51,5 mm d2 = 300 mm	d1 d2
S300 PIN: bobina de 15 kg.	b = 100 mm d1 = 51,5 mm d2 = 300 mm	
K300: bobina de 15 kg. (se utiliza con adaptador)	b = 98 mm d1 = 190 mm d2 = 300 mm	d ₁ d ₂ -
H420: bobina de 25 kg.	b = 150 mm d1 = 300 mm d2 = 415 mm	d1 d2-

7.2 DATOS TÉCNICOS PARA LA SOLDADURA DE ACEROS INOXIDABLES

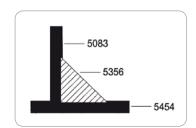

7.2.1. MATERIALES DE APORTACIÓN PARA LA SOLDADURA DE ACEROS INOXIDABLES

METAL BASE		ANÁLIS	SIS QUÍMI	CO DE LO	S ACEROS	S INOXIDABLES	MATERIAL DE APORTACIÓN			
AISI	% C	% Mn	% Si	% Cr	% Ni	OTROS ELEMENTOS	ELECTRODO	MIG	TIG	ARCO SUMERGIDO
				<u> </u>		ACEROS INOXID	ABLES AUST	ENÍTICOS		
201	0,15	5,5/7,5	1,00	16,0/18,0	3,5/5,5	N 0,25 Max.	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
202	0,15	7,5/10,0	1,00	17,0/19,0	4,0/6,0	N 0,25 Max				PROSTAR UM-308L
301	0,15	2,00	1,00	16,0/18,0	6,0/8,0	· -	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
302	0,15	2,00	1,00	17,0/19,0	8,0/10,0	-	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
302B	0,15	2,00	2,00/3,00	17,0/19,0	8,0/10,0	-	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
303	0,15	2,00	1,00	17,0/19,0	8,0/10,0	S 0,25 Min	GRINOX 1	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
304	0,08	2,00	1,00	18,0/20,0	8,0/12,0	-	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
304L	0,03	2,00	1,00	18,0/20,0	8,0/12,0	-	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
304LN	0,03	2,00	1,00	17,0/19,5	8,5/11,5	N 0,15 Max.	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
305	0,12	2,00	1,00	17,0/19,0	10,0/13,0	-	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
308	0,08	2,00	1,00	19,0/21,0	10,0/12,0	-	GRINOX 502	PROSTAR M-308L	PROSTAR T-308L	PROSTAR UM-308L
309	0,20	2,00	1,00	22,0/24,0	12,0/15,0	-	GRINOX 73	PROSTAR M-309L	PROSTAR T-309L	PROSTAR UM-309L
309S	0,08	2,00	1,00	22,0/24,0	12,0/15,0	-	GRINOX 73	PROSTAR M-309L	PROSTAR T-309L	PROSTAR UM-309L
310	0,25	2,00	1,50	24,0/26,0	19,0/22,0	-	GRITHERM 46	PROSTAR M-310	PROSTAR T-310	PROSTAR UM-310
310S	0,08	2,00	1,50	24,0/26,0	19,0/22,0	-	GRITHERM 46	PROSTAR M-310	PROSTAR T-310	PROSTAR UM-310
314	0,25	2,00	1,50/3,00	23,0/26,0	19,0/22,0	-	GRITHERM 47	PROSTAR M-310	PROSTAR T-310	PROSTAR UM-310
316	0,08	2,00	1,00	16,0/18,0	10,0/14,0	Mo 2,0/3,0	GRINOX 510	PROSTAR M-316L	PROSTAR T-316L	PROSTAR UM-316L
316L	0,03	2,00	1,00	16,0/18,0	10,0/14,0	Mo 2,0/3,0	GRINOX 510	PROSTAR M-316L	PROSTAR T-316L	PROSTAR UM-316L
316Ti	0,08	2,00	1,00	16,5/18,5	10,5/13,5	Mo 2,0/2,5;Ti 0,7	GRINOX 514	PROSTAR M-318	PROSTAR T-318	PROSTAR UM-318
316LN	0,03	2,00	1,00	16,5/18,5	11,0/14,0	Mo 2,5/3,0;N 0,12/0,22	GRINOX 510	PROSTAR M-316L	PROSTAR T-316L	PROSTAR UM-316L
317	0,08	2,00	1,00	18,0/20,0	11,0/15,0	Mo 3,0/4,0	-	PROSTAR M-317	PROSTAR T-317	PROSTAR UM-317
317L	0,03	2,00	1,00	18,0/20,0	11,0/15,0	Mo 3,0/4,0	-	PROSTAR M-317	PROSTAR T-317	PROSTAR UM-317
321	0,08	2,00	1,00	17,0/19,0	9,0/12,0	Ti 5XC Min	GRINOX 507	PROSTAR M-347	PROSTAR T-347	PROSTAR UM-347
347	0,08	2,00	1,00	17,0/19,0	9,0/13,0	Nb+Ta 10XC Min	GRINOX 507	PROSTAR M-347	PROSTAR T-347	PROSTAR UM-347
348	0,08	2,00	1,00	17,0/19,0	9,0/13,0	Ta 0,10 Max.	GRINOX 507	PROSTAR M-347	PROSTAR T-347	PROSTAR UM-347
-	0,02	2,00	0,7	19,0/21,0	24,0/26,0	Mo 4,0/5,0;Cu 1,2/2,0	-	PROSTAR M-385	PROSTAR T-385	PROSTAR UM-385
						S INOXIDABLES AUS				
329	0,05	2,00	1,00	25,0/28,0	4,5/6,5	Mo 1,3/2,0; N 0,05/0,2	GRINOX 62			PROSTAR M-2209
-	0,03	2,00	1,00	21,0/23,0	4,5/6,5	Mo 2,5/3,5; N 0,1/0,22	GRINOX 62	PROSTAR M-2209	PROSTAR M-2209	PROSTAR M-2209
					^	OFFICE INCVIDANTE) EEDDÍTIOO			
40.5	0.00	4.00	4.00	44.5/44.5		CEROS INOXIDABLES	S FERRITICO		DD0074D T 440	DD00T1D1IN4 440
405	0,08	1,00	1,00	11,5/14,5	-	Al 0,10/0,30	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
430	0,12	1,00	1,00	14,0/18,0	-	-	-	PROSTAR M-430	PROSTAR T-430	PROSTAR UM-430
					4.05		AA DEEN OÍTIC	200		
					ACE	ROS INOXIDABLES N	MARTENSITIC			
403	0,15	1,00	0,50	11,5/13,0	-	-	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
405	0,08	1,00	1,00	11,5/14,5	-	Al 0,10/0,30	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
410	0,15	1,00	1,00	11,5/13,5	-	-	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
414	0,15	1,00	1,00	11,5/13,5	1,25/2,5	-	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
416	0,15	1,25	1,00	12,0/14,0	-	S 0,15 Min	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
420	0,15	1,00	1,00	12,0/14,0	-	-	-	PROSTAR M-410	PROSTAR T-410	PROSTAR UM-410
431	0,20	1,00	1,00	15,0/17,0	1,25/2,5	-	-	PROSTAR M-430	PROSTAR T-430	PROSTAR UM-430

MATERIALES DE APORTACIÓN PARA LA SOLDADURA DE ACEROS INOXIDABLES

METAL BASE	501 502 505	Acero de baja Aleación	Acero al Carbono	446	400/ 440C	330	321 347 348	316L 317L 318	316 317	310 310S 314	309 309S	201 304 202 304L 301 302 305 303 308
201 202	GRITHERM 44	GRINOX 73	GRINOX 73	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502
301 304L 302 305 303 308 304	GRITHERM 44	GRINOX 73	GRINOX 73	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502	GRINOX 502
309 309S	GRITHERM 44	GRINOX 73	GRINOX 73	GRINOX 73	GRINOX 502	GRITHERM 44	GRINOX 502	GRINOX 73 502	GRINOX 73 502	GRITHERM 44		
310 310S 314	GRITHERM 44	GRINOX 73	GRINOX 73	GRITHERM 44	GRINOX 502	GRITHERM 44	GRINOX 502	GRINOX 510	GRINOX 510	GRITHERM 46		
316 317	GRITHERM 44	GRINOX 73	GRINOX 73	GRINOX 510	GRINOX 502	GRINOX 73	GRINOX 502	GRINOX 510	GRINOX 510			
316L 317L 318	GRITHERM 44	GRINOX 73	GRINOX 73	GRINOX 510	GRINOX 502	GRINOX 73	GRINOX 502 507	GRINOX 510				
321 347 348	GRITHERM 44	GRINOX 73	GRINOX 73	GRINOX 502	GRINOX 502	GRITHERM 44	GRINOX 502 507					
330	GRITHERM 44	GRINOX 29	GRINOX 29	GRITHERM 44	GRITHERM 44							
440 440C	GRITHERM 44	GRINOX 73	GRINOX 29	GRITHERM 44	GRITHERM 44					31	6L	
446	GRITHERM 44	GRINOX 73	GRINOX 29								- GRINO	X 502

Los materiales de aportación están colocados por orden de preferencia.



7.3. DATOS TÉCNICOS PARA LA SOLDADURA DEL ALUMINIO Y SUS ALEACIONES

7.3.1. MATERIALES DE APORTACIÓN RECOMENDADOS PARA LA SOLDADURA DE ALEACIONES DE ALUMINIO DISIMILARES

METAL BASE	6061 6063 6082	5083	5454	5154 5251	
1050	4043 5356	5356 4043	4043 5183 5356	4043 5183 5356	
3103	4043 5356	5356 5183	5183 5356	5183 5356	
5052	4043 5183 5356	5356 5183	5183 5356	5356 5183	
5154 5251	5356 5183 4043	5356 5183	5356 5183	5356 5183	
5454	5356 5183 4043	5356 5183	5554 5356		
5083	5356 5183	5183 5356			
6061 6063 6082	4043 5356 5183				

7.4. DATOS TÉCNICOS PARA LA SOLDADURA DE REPARACIÓN Y MANTENIMIENTO

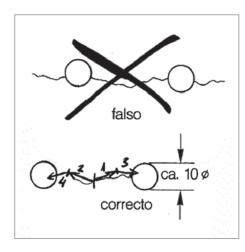
7.4.1. CUADRO DE TEMPERATURAS DE PRECALENTAMIENTO

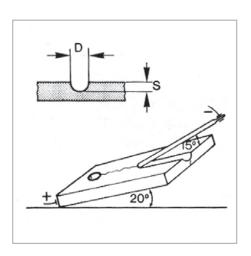
TIPO DE ACERO	CONTENIDO EN CARBONO	TEMPERATURAS RECOMENDADAS
	0,15 – 0,20	< 100 ° C
	0,20 – 0,30	100 – 150 ° C
	0,30 – 0,35	150 – 250 ° C
ACEROS AL CARBONO	0,35 – 0,40	150 – 300 ° C
	0,40 -0,45	150 – 300 ° C
	0,45 – 0,50	200 – 400 ° C
	0,75 – 0,85	300 – 400 ° C
ACEROS	0,10 – 0,20	150 – 250 ° C
ALEADOS AL MOLIBDENO	0,20 – 0,30	200 – 320 ° C
WOLIBDENO	0,30 – 0,35	250 – 430 ° C
ACEROS AL	< 0,30	216 – 320 ° C
MANGANESO	< 0,44	260 – 430 ° C
	< 0,50	320 – 480 ° C
	1,5	Desaconsejado
	0,95 – 1,10	600 – 800 ° C
ACEROS AL	< 0,10	200 – 400 ° C
CROMO	< 0,10	200 – 400 ° C
	< 0,10	200 – 400 ° C
ACEROS AL	0,20 – 0,30	200 – 300 ° C
CROMO MOLIBDENO	0,30 – 0,45	250 – 300 ° C
	0,28 – 0,35	300 – 400 ° C
	< 0,12	200 – 300 ° C
ACEROS AL NIQUEL	< 0,20	250 – 350 ° C
CROMO	< 0,40	300 – 400 ° C
	< 0,35	400 – 500 ° C
ACEROS AL NIQUEL	0,17 – 0,23	200 – 300 ° C
CROMO MOLIBDENO	0,36 – 0,43	350 – 400 ° C
MOLIBBLING	0,30 – 0,37	400 – 600 ° C
ACEROS INOXIDABLES	El contenido en Carbono varia de 0,03 a 0,08	Generalmente el precalentamiento no es necesario

7.4.2. IDENTIFICACIÓN DE METALES

MATERIAL	ASPECTO DE LA SUPERFICIE	PRUEBA DE LAS CHISPAS	PRUEBA MAGNÉTICA	PRUEBA DE LA LIMA	PRUEBA DEL CINCEL
ACERO AL CARBONO	COLOR GRIS OSCURO. SUPERFICIE LISA O RUGOSA	LAS CHISPAS SE DIVIDEN AL FINAL, EN VARIAS RAMIFICACIONES	MAGNÉTICO	ENTRE 100 Y 400 HB DE DUREZA, LA LIMA MUERDE EL METAL EN FUNCIÓN DE LA PRESIÓN QUE SE EJERZA	AL CINCELAR, SE FORMAN VIRUTAS LARGAS
ACERO AL MANGANESO	COLOR GRIS OSCURO. SUPERFICIE LISTA O RUGOSA	LAS CHISPAS SE DIVIDEN, ACABANDO EN ESTRELLAS	NO MAGNÉTICO (SE VUELVE MAGNÉTICO CUANDO ENDURECE EN SERVICIO)		
ACERO RÁPIDO	COLOR GRIS OSCURO. SUPERFICIE LISA O RUGOSA	CHISPAS ROJAS, DÉBILES, CON EXTREMOS FORMANDO TRIDENTES	MAGNÉTICO	LA LIMA DEJA MARCAS, PERO EL METAL ES CASI TAN DURO COMO LA LIMA. CUANDO EL ACERO ESTÁ ENDURECIDO LA LIMA NO AGARRA	
ACERO INOXIDABLE	BRILLANTE SI SE PULE. GRIS MATE SIN PULIR	CHISPAS AMARILLAS BRILLANTES, CON EXTREMOS EN PUNTA	NO MAGNÉTICO. (CUANDO ES AUSTENÍTICO)		
FUNDICIÓN GRIS	COLOR GRIS OSCURO. SUPERFICIE RUGOSA DE MAL ACABADO	CHISPAS ROJAS DÉBILES, VOLVIÉNDOSE DE COLOR PAJIZO CON MUCHAS PUNTAS	MAGNÉTICO		AL CINCELAR, LAS VIRUTAS SE ROMPEN EN PEQUEÑOS TROZOS
FUNDICIÓN BLANCA	COLOR GRIS OSCURO. SUPERFICIE RUGOSA DE MAL ACABADO	CHISPAS ROJAS DÉBILES, VOLVIÉNDOSE DE COLOR PAJIZO CON MUCHAS PUNTAS	MAGNÉTICO		AL CINCELAR, LAS VIRUTAS SE ROMPEN EN PEQUEÑOS TROZOS

7.4.3. REPARACIÓN DE UNA FISURA EN FUNDICIÓN GRIS


Antes de empezar la reparación, es necesario preparar los bordes de unión (en V o en X en función del espesor de la pieza)


A continuación, la ejecución se debe realizar en los siguientes pasos:

- Limpiar la pieza en la zona a soldar (libre de aceite y grasa)
- Comprobar la forma de la grieta.
- Taladrar un agujero al principio y al final de la grieta.
- Ranurar con el electrodo GRICON 53.

Elegir el diámetro adecuado del electrodo en función del ancho (D) y de la profundidad (S) de la ranura.

- Soldar con electrodo GRICAST 1 o GRICAST 31.
- Empezar los cordones desde el centro de la fisura hacia los extremos haciendo una ejecución simétrica como indica la figura.
- Hacer paso de peregrino (cordones cortos de 20 30 mm) para evitar localizar el calor.
- Martillar el cordón.
- Dejar enfriar lentamente entre cordones.
- Rellenar los taladros.

7.4. ELECTRODOS RECOMENDADOS PARA LA SOLDADURA DE MATERIALES DISIMILARES

	ACEROS AL CARBONO ACEROS FUNDIDOS ACEROS DE HERRAMIENTA	ACEROS INOXIDABLES	ACEROS AL MANGANESO	INCONEL 600	MONEL 400	NÍQUEL	COBRE BRONCES	HIERRO FUNDIDO
ACEROS AL CARBONO ACEROS FUNDIDOS ACEROS DE HERRAMIENTA	GRINOX 126 GRINOX 29		GRINOX 126 GRINOX 29	GRINI 207	GRINI 5 GRINI 207	GRINI 207	GRINI 5 GRICU 11	GRICAST 31
	ACEROS INOXIDABLES	GRITHERM 44 GRINOX 126 GRINOX 29	GRINOX 126 GRINOX 29	GRINI 207	GRINI 5 GRINI 207	GRINI 207	GRINI 5 GRICU 11 GRINI 207	GRICAST 31
		ACEROS AL MANGANESO	GRINOX 126	GRINI 207	GRINI 207	GRINI 207	GRICU 11 GRINI 207	GRICAST 31
			INCONEL 600	GRINI 207	GRINI 207	GRINI 207	GRICU 11 GRINI 207	GRICAST 31 GRINI 207
				MONEL 400	GRINI 5	GRINI 5	GRICU 11 GRINI 207	GRICAST 6
						COBRE BRONCES	GRICU 1 GRINI 11	GRICU 11
							HIERRO FUNDIDO	GRICAST 1 GRICAST 31

7.4. ELECTRODOS RECOMENDADOS PARA LA SOLDADURA DE MATERIALES DISIMILARES

		ELECTRODOS	S RECOMENDA	DOS PARA DIF	ERENTES APL	ICACIONES		
METAL BASE	CORTE Y RANURADO	UNIR	RECRECER	DESGASTE METAL-METAL	DESGASTE METAL-TIERRA	ABRASIÓN EXTREMA	HERRAMIENTAS CORE EN FRIO	HERRAMIENTAS CORTE EN CALIENTE
ACERO AL CARBONO	PROSTAR CT-53	GRICON 33 GRICON 43 GRIDUCT 1	GRIDUR 3	GRIDUR 3	GRIDUR 7 GRIDUR 18 GRIDUR 50 2134	2134 GRIDUR 65	GRIDUR 36	GRIDUR 34
ACERO ALTA ALEACIÓN ACERO FUNDIDO	PROSTAR CT-53	GRINOX 126 GRINOX 29	GRINOX 126 GRINOX 29	GRINOX 126 GRINOX 29	GRIDUR 7 GRIDUR 18 GRIDUR 50 2134	GRIDUR 65 PROSTAR D-44	GRIDUR 36	GRIDUR 34
ACERO AL MANGANESO	PROSTAR CT-53	GRINOX 126	PROSTAR D-42 GRINOX 126	PROSTAR D-42 GRINOX 126	GRIDUR 7 GRIDUR 18 GRIDUR 50 2134	GRIDUR 65 PROSTAR D-44		
ACERO INOXIDABLE	PROSTAR CT-53	GRINOX 126 GRINOX 29	GRINOX 126 GRINOX 29	GRIDUR 16 GRINOX 29	GRIDUR 7 GRIDUR 18 GRIDUR 50 2134	GRIDUR 65 PROSTAR D-44	GRIDUR 36	GRIDUR 34
HIERRO FUNDIDO	PROSTAR CT-53	GRICAST 1 GRICAST 31	GRICAST 1 GRICAST 31	GRICAST 1 GRICAST 31				
ALEACIONES DE COBRE	PROSTAR CT-53	GRICU 11 GRICU 8	GRICU 11 GRICU 12 GRICU 8	GRICU 11 GRICU 12 GRICU 8				
ALEACIONES DE ALUMINIO	PROSTAR CT-53	GRILUMIN 14	GRILUMIN 14	GRILUMIN 14				

^{*} El corte y ranurado se puede realizar con dificultades

7.5. DATOS TÉCNICOS PARA RECARGUE DURO

7.5.1. CONCEPTO RECARGUE DURO

Es depositar mediante un proceso de soldadura una aleación resistente al desgaste sobre una parte metálica para formar una superficie resistente al desgaste por abrasión, impacto, temperatura, corrosión o una combinación de estos factores.

TIPOS DE DESGASTE

ABRASIÓN

Es una acción esmeriladora causada por sólidos abrasivos deslizantes rozando y puliendo contra una superficie.

IMPACTO

Es la acción de golpear una superficie resultando una fractura o deterioro gradual.

CALOR

Es una acción que influye sobre estructuras endurecidas por tratamiento térmico, reblandeciéndolas: esto puede causar cambios de fase que incrementan la dureza y fragilidad y puede acelerar el ataque químico, tal como la oxidación y exfoliación.

CORROSIÓN

Es el deterioro que sufre el metal como consecuencia de una reacción química o electroquímica con el medio ambiente.

DILUCIÓN

Durante el proceso de recargue se produce una mezcla entre el metal base y el material de aportación, denominada dilución, que es la proporción en la que el metal base participa en la elaboración del recargue.

La dilución debe ser mínima para que el depósito no pierda dureza, ésto es especialmente importante cuando se emplean metales de aportación de base Co y base Ni. Para conseguirlo se trabajará a baja intensidad y alto voltaje.

PROCESO	DILUCIÓN
OXIACETILÉNICO	5%
ELECTRODO REVESTIDO	30%
MIG	20%
TIG	15%
ARCO SUMERGIDO	40%
PLASMA	20%

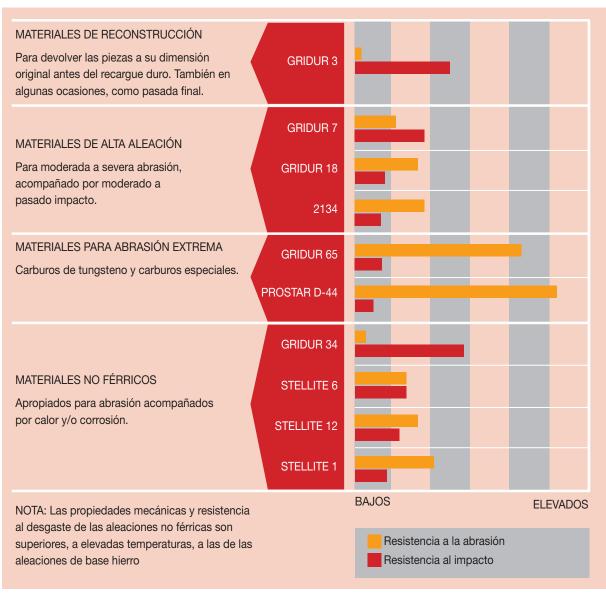
VENTAJAS ECONÓMICAS DEL RECARGUE DURO

- Mantiene el equipo en funcionamiento.
- Mayor duración significa menos paradas.
- Empleo de materiales base más baratos.
- Combinación de altas durezas y resistencia estructural.
- Menos piezas a la chatarra.
- Reducción de la inversión en stock de piezas.
- Menor consumo de energía motriz.

DUREZA

Es la resistencia a la penetración.

Depende:

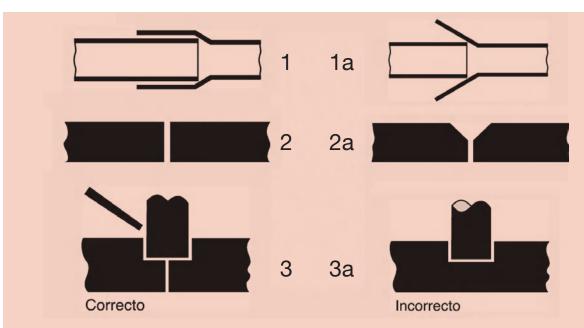

- Análisis del depósito
- Tiempo de enfriamiento
- Número de pasadas

Escalas de Dureza:

- Brinell
- Rockwell
- Vickers

7.5.2. VALORES RELATIVOS DE RESISTENCIA A LA ABASIÓN Y AL IMPACTO DE LOS MATERIALES DE RECARGUE DURO

NOTA: La longitud de la barra indica los valores relativos de resistencia a la abrasión y al impacto.

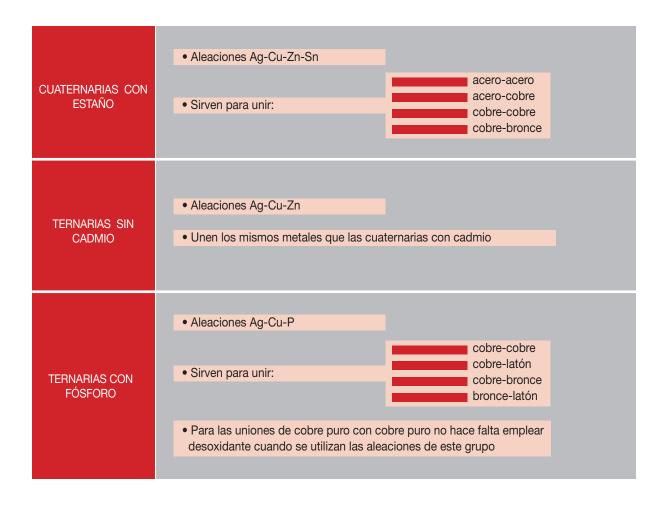

7.5.3. COMPARACIÓN DE LAS ESCALAS DE DUREZA

Vickers (punta diamante) HV carga 30 kg	Brinell (bola acero HB) Carga 3000 kg	Dureza Rockwell (lectura directa) HRc	Resistencia a la tracción aprox. N/mm²
100	95	-	327
120	115	-	393
140	135	-	455
160	150	-	527
180	170	-	598
200	190	-	658
220	210	-	723
240	230	20	780
260	250	24	850
280	265	27	923
300	285	30	972
320	305	32	1041
340	320	34	1102
360	340	37	1166
380	360	39	1231
400	380	41	1290
420	395	43	1355
440	415	45	1417
460	435	46	1481
480	450	48	1546
500	470	49	1610
520	485	51	1674
540	505	52	1739
560	520	53	1802
580	535	54	1868
600	520	55	1922
620	535	56	1984
640	550	57	2015
660	565	58	2069
680	580	59	2108
700	590	60	2150
725	605	61	-
750	615	62	-
800	625	64	-
850	640	66	-
900	-	67	-
950	-	68	-
1000	-	69	-
1100	-	71	-
1200	-	72	-

7.6. DATOS TÉCNICOS PARA LA SOLDADURA DE BAJO PUNTO DE FUSIÓN

7.6.1. CONCEPTO SOLDADURA DE BAJO PUNTO DE FUSIÓN

- Diseño de la unión:
 Es necesaria una preparación adecuada entre los bordes de unión (figuras 1, 2 y 3).
 - a) El huelgo debe ser el adecuado para que la acción capilar cumpla sus funciones (tabla adjunta).
 - b) Las superficies deben estar paralelas entre sí.
 - c) La condición de la superficie debe ser favorable para ser humedecida y que el material de aportación fundido pueda extenderse entre las superficies a unir.
- 2. Selección de la varilla apropiada y el flux correcto.


- 3. La superficie del material base debe estar limpia en la zona de unión.
- 4. Calentar el material base rápidamente a la temperatura de trabajo, el precalentamiento lento puede llegar a consumir el flux. El exceso de calor es perjudicial para la pieza y el desoxidante. La temperatura de trabajo correcta se alcanzará cuando el flux esté licuado por completo. Emplear llama reductora.
- 5. Los residuos del flux se eliminan, generalmente, con agua o con un cepillo.

7.6.2. HUELGOS RECOMENDADOS

MATERIAL DE	METAL BASE					
APORTACIÓN	COBRE Y SUS ALEACIONES	METALES FÉRRICOS NÍQUEL Y SUS ALEACIONES				
Cuaternarias % Ag>40	0,05 – 0,15	0,04 - 0,15				
Cuaternarias % Ag	0,05 – 0,25	0,04 – 0,2				
Ternarias Ag-Cu-P	0,04 - 0,2	Inadecuado				

7.6.3. GRUPOS DE ALEACIONES RECOMENDADOS PARA LA SOLDADURA DE BAJO PUNTO DE FUSIÓN

7.7. DEFECTOS EN CORDONES DE SOLDADURA

DEFECTOS	CAUSAS	REMEDIOS
FALTA DE PENETRACIÓN	DIÁMETRO DEL ELECTRODO DEMASIADO GRUESO. INTENSIDAD DE CORRIENTE MUY DÉBIL. VELOCIDAD DE AVANCE DEL ELECTRODO EXCESIVA. BORDES DE LA CHAPA MUY JUNTOS.	UTILIZAR ELECTRODOS DE DIÁMETRO ADECUADO. AUMENTAR LA INTENSIDAD. DISMINUIR LA VELOCIDAD DE AVANCE Y CONSEGUIR UN AGUJERO DE MÁS ANCHURA QUE LA SEPARACIÓN DE BORDES. PONER LA SEPARACIÓN DEBIDA.
EXCESIVA PENETRACIÓN	INTENSIDAD EXCESIVA. VELOCIDAD DE AVANCE DEL ELECTRODO MUY PEQUEÑA. EXCESIVA SEPARACIÓN.	 DISMINUIR LA INTENSIDAD. AUMENTAR LA VELOCIDAD DE AVANCE. REDUCIR LA SEPARACIÓN.
PEGADURA	INTENSIDAD MUY DÉBIL. INCLINACIÓN DEL ELECTRODO MUY PEQUEÑA. ARCO DEMASIADO LARGO Y EL METAL SE ENFRÍA EN SU RECORRIDO. VELOCIDAD DE AVANCE EXCESIVA.	AUMENTAR LA INTENSIDAD. AUMENTAR LA INCLINACIÓN. DISMINUIR LA LONGITUD DEL ARCO A UNA DISTANCIA IGUAL O MENOR A SU DIÁMETRO. DISMINUIR LA VELOCIDAD.
INCLUSIÓN DE ESCORIA	INTENSIDAD MUY DÉBIL. FALTA DE LIMPIEZA DEL CORDÓN ANTERIORMENTE DEPOSITADO. CORDONES MAL DISTRIBUIDOS.	AUMENTAR LA INTENSIDAD. AUMENTAR LA INCLINACIÓN DEL ELECTRODO PARA FAVORECER EL SOLAPADO DE ARCO Y EL ALEJAMIENTO DE LA ESCORIA DEL PUNTO DE FUSIÓN. ELIMINAR PERFECTAMENTE LA ESCORIA ANTES DE DEPOSITAR UN NUEVO CORDÓN. DISTRIBUIR LOS CORDONES DE FORMA QUE LA SEPARACIÓN ENTRE CORDONES O CARA DEL CHAFLÁN SEA SUFICIENTE PARA PERMITIR LA PENETRACIÓN DEL METAL FUNDIDO.
FALTA DE ESPESOR	• FALTA DE MATERIAL, RELLENO INSUFICIENTE DEL CHAFLÁN.	DEPOSITAR EL ULTIMO CORDÓN CON UN SOBREESPESOR DE UNOS 2 mm.
EXCESO DE METAL APORTADO	 DIÁMETRO DEL ELECTRODO DEMASIADO GRUESO. VELOCIDAD DE AVANCE MUY PEQUEÑA. RELLENO DEL CHAFLÁN EXCESIVO EN LA PASADA ANTERIOR A LA ÚLTIMA. 	UTILIZAR ELECTRODOS DE MENOR DIÁMETRO. AUMENTAR LA VELOCIDAD DE AVANCE. PROCURAR QUE LA PASADA PENÚLTIMA NO RELLENE DEMASIADO EL CHAFLÁN.
MORDEDURAS	INTENSIDAD EXCESIVA. DIÁMETRO DEL ELECTRODO DEMASIADO GRUESO. INCLINACIÓN DEL ELECTRODO INCORRECTA. MOVIMIENTO DEFECTUOSO DEL ELECTRODO.	 DISMINUIR LA INTENSIDAD. DISMINUIR EL DIÁMETRO. DAR LA INCLINACIÓN CORRECTA AL ELECTRODO. DETENER EL ELECTRODO EN LOS LADOS DEL CORDÓN.
ASPECTO IRREGULAR DEL CORDÓN	INTENSIDAD EXCESIVA O ESCASA. MOVIMIENTO DE AVANCE IRREGULAR. ARCO MUY LARGO. INCLINACIÓN INCORRECTA DEL ELECTRODO. PIEZA MUY CALIENTE. MOVIMIENTO TRANSVERSAL MUY IRREGULAR.	 REGULAR BIEN LA INTENSIDAD. DAR UN MOVIMIENTO UNIFORME AL ELECTRODO. DAR LA INCLINACIÓN CORRECTA. DEJAR ENFRIAR LA PIEZA ANTES DE DEPOSITAR UN NUEVO CORDÓN.
POROS SUPERFICIALES	MATERIAL DE BASE CON GRAN CONTENIDO DE CARBONO, AZUFRE O FÓSFORO; ESTOS ELEMENTOS FORMAN GASES EN SU COMBUSTIÓN. EL ELECTRODO SI SE PONE ROJO EN SU PARTE FINAL POR EXCESO DE INTENSIDAD PUEDE PRODUCIRLOS. REVESTIMIENTO HÚMEDO.	CUANDO SALGAN POROS POR LA ACCIÓN DEL AZUFRE O FÓSFORO, UTILIZAR ELECTRODOS ESPECIALES. DISMINUIR LA INTENSIDAD. SECAR LOS ELECTRODOS, SI SON BÁSICOS MANTENERLOS EN UNA ESTUFA DOS HORAS A UNA TEMPERATURA DE 200° Y DURANTE SU UTILIZACIÓN MANTENERLOS A 90°.
SOPLADURAS	LAS SOPLADURAS SON PRODUCIDAS POR LAS MISMAS CAUSAS QUE LOS POROS.	LOS MISMOS QUE PARA LOS POROS.
FISURAS	RIGIDEZ EXCESIVA DE LA OBRA. ELECTRODOS NO APROPIADOS PARA EL METAL BASE. ACEROS CON ELEVADO CONTENIDO DE CARBONO. ACEROS ALEADOS. ACEROS CON ELEVADO CONTENIDO EN AZUFRE Y FÓSFORO. EXCESIVA INTENSIDAD.	ESTUDIAR EL PROYECTO DE FORMA QUE SE EVITE LA RIGIDEZ EN LAS ZONAS DE SOLDADURA. UTILIZAR ELECTRODOS DE COMPOSICIÓN PARECIDA AL METAL BASE. PRECALENTAR LA PIEZA. UTILIZAR ELECTRODOS BASICOS O AUSTENÍTICOS. DEPOSITAR CORDONES GRUESOS. DISMINUIR LA INTENSIDAD.

Equipos soldadura

8 Gases de protección

SELECCIÓN DE GASES

Impulsa tu productividad

				PLASMA CORTE	GAS PLASMA	LASER CORTE		
PROCEDIMIENTO DE SOLDADURA	TIG	MIG	PLASMA SOLDADURA	GAS PLASMA	GAS DE PROTECCIÓN	GAS RESONADOR (Sólo para Láser de CO ₂)	GAS ASISTENCIA	
			\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
ACEROS AL CARBONO Y BAJA ALEACIÓN	ARGÓN S1 HELISTAR 5/30	STARGÓN C-8 STARGON C-15/20 STARGON 82/90 HELISTAR CS	ARGÓN S1 HYDROSTAR 2/5/7(*) HELISTAR 30/50/70	OXIGENO S1 AIRE	OXIGENO S1 AIRE	HÉLIO Q1 NITRÓGENO Q1 CO₂ 4X LASERSTAR	OXIGENO Q1 NITROGENO Q1	
(ACERO GALVANIZADO)		HELISTAR GV					NITRÓGENO Q1	
(SOLDADURA LIBRE DE ESCORIAS)		STARGÓN C-2						
ACEROS INOXIDABLES	ARGÓN S1 ARGÓN Q1 HYDROSTAR 2/5/7 HELISTAR 5/30 HELISTAR 685	STARGÓN C2 STARGÓN SS HYDROSTAR PB SS HELISTAR SS HELISTAR7C/15C/30H STARGÓN 0-1/0-3	ARGÓN S1 HYDROSTAR 2/5/7 HELISTAR 30/50/70	NITRÓGENO S1 FORMINGÁS 5 HYDROSTAR 35 HYDROSTAR 17N	NITRÓGENO S1	HELIO Q1 NITRÓGENO Q1 CO ₂ 4X LASERSTAR	NITRÓGENO Q1	
ACERO INOXIDABLE DUPLEX	STARGÓN N1/N2/N3 HELISTAR N1	STARGÓN SS HELISTAR SS						
ALUMINIO Y ALEACIONES	ARGÓN S1 ARGÓN Q1 STARGOLD HELISTAR 5/30/50/70	ARGÓN S1 ARGÓN Q1 STARGOLD HELISTAR 5/30/50/70	ARGÓN S1 HELISTAR 30/50/70	NITRÓGENO S1 HYDROSTAR 35	NITRÓGENO S1	HÉLIO Q1 NITRÓGENO Q1 CO ₂ 4X	NITRÓGENO Q1	
COBRE, NÍQUEL Y ALEACIONES	ARGÓN S1 ARGÓN Q1 HELISTAR 5/30/50/70	ARGÓN S1 ARGÓN Q1 HELISTAR 5/30/50/70	ARGÓN S1 HELISTAR 5/30/50/70				NITRÓGENO Q1 OXIGENO Q1	

^(*) Donde el hidrógeno no origine fisuración o porosidad

SELECCIÓN DE GASES

BOTELLA

BLOQUE

STARCYL

MICROBULK

TANQUES

(Consumo m³/mes)

GASES	*** BOTELLA										
		Dimension	es Aprox.	Presión Máx.	Capa	acidad a	prox.	Peso aprox.			
OXÍGENO NITRÓGENO	TIPO*	Largo mm.	Diámetro mm.	Kg/cm ²	Gas m²	Kg	Agua L	Kg			
ARGÓN	<i>-</i>	F70	4.45	200	1		5	10			
MEZCLAS	5 H	570	145	300 ***	1,5		5	10,5			
SOLDADURA	20 H	950	207	200	4		20	36			
HELIO			201	300***	6		20	38			
HIDRÓGENO	30 H	1.240	230	300***	9		30	71			
HIDHOGENO	FFOL		000	200	10		50	85			
	F50L	1.680	230	300***	15		50	95			
ACETILENO	40 L	1.345	230	18**		7	40	83			
CO ₂	50 L	1.680	330			37,5	50	105			

 CO_2 12 1.050 820 1.940 450 1.350

- · Facilidad de transporte
- Puestos de trabajo móviles o con difícil acceso

 Consumos intermitentes y no muy
- elevados
- Cuando sea necesario una presión elevada
 • Facilidad para encontrar un punto de
- distribución próxima
- Cuando se disponga de poco espacio junto al puesto de trabajo.
 Starsafe. Botella con válvula integrada
- para oxígeno, acetileno, argón y mezclas.
- Consultar otras formas de suministro
- ** Presión utilización máxima de 1 kg/cm² *** Bloque 500 Bar para Helio, Nitrógeno, Argón y mezclas

GASES	*** BLOQUE									
OXÍGENO		Dimensio	nes Aprox.	Presión Máx.	Capacidad aprox.			Peso aprox.		
NITRÓGENO ARGÓN	N°BOT*	Largo mm.	Diámetro mm.	Kg/cm ²	Gas m²	Kg	Agua L	Kg		
MEZCLAS	12	1.050	820	1.940	200	120		1.395		
SOLDADURA	12	1.050	820	1.940	300	180		1.520		
HELIO	16	1.050	1.050	1.940	200	160		1.810		
HIDRÓGENO	28	1.790	1.070	1.855	200	280		2.950		
ACETILENO	10	1.210	550	1.820	18**		70	988		
00	40	4 050	000	4 0 40			450	4 050		

- Consumos mediosConsumos intermitentes
- Suministros canalizados
- Cuando sea necesario una presión elevada
- Consultar otras formas de suministro ** Presión utilización máxima de 1 kg/cm²
 *** Bloque 500 Bar para Helio, Nitrógeno,

GASES	* PGS (Posibilidad de suministro líquido y gas)											
OXÍGENO NITRÓGENO ARGÓN		nsiones prox.	Capacidad*					Peso aprox.	Peso Ileno			
	Altura mm.	Diámetro mm.	Líquido L	O_2 M^3	N_2 M^3	Ar M³	CO ₂ Kg	Kg	O₂ Kg	N₂ Kg	Ar Kg	CO ₂
CO ₂	169	125	100	120	169	125	100	120	169	125	100	120

Argón y mezclas

- Consumos mediosUniformidad de consumo y sin puntas muy elevadas
- Distribución próximaCuando no es necesario una presión
- elevada
 * Consultar otras formas de suministro

EQUIPO	4	* STARCYL / PT-6 (posibilidad de suministros líquido y gas)											
OXÍGENO		nsiones rox.	Capacidad*					Peso aprox.					
NITRÓGENO ARGÓN CO ₂	Altura mm.	Diámetro mm.	Líquido L	O ₂ M ³	N ₂ M ³	Ar M³	CO ₂ Kg	Kg	O ₂ Kg	N ₂ Kg	Ar Kg	CO ₂	
PT-6	1.200	1.100	1.400	666	480	385	470	570	560	1.274	1.066	1.437	
STARCYL 600/24 BAR	1.420	1.120	1.765	630	479	314	425	670	712	1.355	1.085	1.425	
STARCYL 800/37 BAR	1.420	1.120	1.990	800	-	380	-	-	924	-	1.376	-	

- (1) Datos de capacidad y peso de llenado: N al 85%, resto de gases al 95%

 (2) Datos de capacidad u peso de llenado
- al 70% (3) Densidad del CO₂ (CN): 1,886 kg/m³
 • Consumos uniformes medios o elevados pero inferiores a tanque.

- Suministros canalizados
- Distribución próxima
- Presión hasta 34 bar

*Consultar Otras formas de suministro

EQUIPO		* MICROBULK (posibilidad de suministros líquido y gas)											
MODELO		230/22 RB	230/22 SB	600/24	1000/24	1000/37	1500/24	1500/37	2000/24	2000/.37			
CAPACIDAD BRUTA	(bters)	240	240	659	996	989	1.522	1.504	2.030	2.007			
CAPACIDAD NETA	(bters)	228	228	620	945	940	1.446	1.428	1.928	1.906			
NITRÓGENO	(Nm³)	147	147	404	611	608	935	923	1.246	1.232			
OXÍGENO	(Nm³)	182	182	500	756	751	1.156	1.142	1.541	1.524			
ARGÓN	(Nm³)	179	179	493	745	741	1.140	1.126	1.520	1.503			

- Consumos uniformes medios o elevados pero inferiores a tanque Suministros canalizados
- Distribución próxima
- Presión hasta 34 bar. No hay cambio de envases.

*Consultar Otras formas de suministro

Delegaciones Galicia Asturias Cantabria Vizcaya Guipúzcoa España Navarra Aragón Cataluña Valencia Murcia Madrid Valladolid Málaga Sevilla Córdoba

Delegaciones Lisboa Portugal Oporto

Centro de pedidos España

900 18 17 17

Fax 902 18 17 17

pedidos.soldadura@praxair.com

www.praxair.es

Centro de pedidos Portugal

220 407 540

@ porto.gases@praxair.com

Fax 22 948 6870

www.praxair.pt

El presente catálogo tiene carácter comercial y su contenido puede variar en función de nuevos estudios sobre la materia. No podrá ser transmitido sin el consentimiento previo y por escrito de PRAXAIR. Su contenido está protegido por derechos de propiedad intelectual por lo que únicamente podrá ser reproducido por PRAXAIR.

